Chapter 11 - Human Eye and Colourful World

  Chapter 11 - Human Eye and Colourful World

                            Shiva valley school


Question 1:  A student has difficulty reading the blackboard while sitting in the last row. What could be the defect the child is suffering from? How can it be corrected?

Answer:

A student has difficulty in reading the blackboard while sitting in the last row. It shows that he is unable to see distant objects clearly. He is suffering from myopia. This defect can be corrected by using a concave lens.

Question 2: The human eye can focus objects at different distances by adjusting the focal length of the eye lens. This is due to

(a) presbyopia

(b) accommodation

(c) near-sightedness

(d) far-sightedness

Answer:

(b) Human eye can change the focal length of the eye lens to see the objects situated at various distances from the eye. This is possible due to the power of accommodation of the eye lens. 

Question 3: The human eye forms the image of an object at its

 (a) cornea

 (b) iris

 (c) pupil

 (d) retina

Answer:

(d) The human eye forms the image of an object at its retina.

Question 4: The least distance

(a) 25 m

(b) 2.5 cm

(c) 25 cm

(d) 2.5 m

Answer:

(c) The least distance of distinct vision is the minimum distance of an object to see clear and distinct image. It is 25 cm for a young adult with normal visions.

Question 5: The change in focal length of an eye lens is caused by the action of the

(a) pupil

(b) retina

(c) ciliary muscles

(d) iris

Answer: distinct vision for a young adult with normal vision is 

(c) The relaxation or contraction of ciliary muscles changes the curvature of the eye lens. The change in curvature of the eye lens changes the focal length of the eyes. Hence, the change in focal length of an eye lens is caused by the action of ciliary muscles.

Question 6: Make a diagram to show how hypermetropia is corrected. The near point of a hypermetropic eye is 1 m. What is the power of the lens required to correct this defect? Assume that the near point of the normal eye is 25 cm.

Answer: A person suffering from hypermetropia can see distinct objects clearly but faces difficulty in seeing nearby objects clearly. It happens because the eye lens focuses the incoming divergent rays beyond the retina. This defect of vision is corrected by using a convex lens. A convex lens of suitable power converges the incoming light in such a way that the image is formed on the retina, as shown in the following figure.


The convex lens actually creates a virtual image of a nearby object (N' in the figure) at the near point of vision (N) of the person suffering from hypermetropia. The given person will be able to clearly see the object kept at 25 cm (near point of the normal eye), if the image of the object is formed at his near point, which is given as 1m. Object distance, u = -25 cm 

Question 7: What happens to the image distance in the eye when we increase the distance of an object from the eye?

Answer:

Since the size of eyes cannot increase or decrease, the image distance remains constant. When we increase the distance of an object from the eye, the image distance in the eye does not change. The increase in the object distance is compensated by the change in the focal length of the eye lens. The focal length of the eyes changes in such a way that the image always formed at the retina of the eye.


Question 8: Why do stars twinkle?

Answer:

Stars emit their own light and they twinkle due to the atmospheric refraction of light. Stars are very far away from the earth. Hence, they are considered as point sources of light. When the light coming from stars enters the earth's atmosphere, it gets refracted at different levels because of the variation in the air density at different levels of the atmosphere. When the star light refracted by the atmosphere comes more towards us, it appears brighter than when it comes less towards us. Therefore, it appears as if the Stars are twinkling at night.


Question 9: Explain why the planets do not twinkle?

Answer:

Planets do not twinkle because they appear larger in size than the stars as they are relatively closer to earth. Planets can be considered as a collection of a large number of point-size sources of light. The different parts of these planets produce either brighter or dimmer effect in such a way that the average of brighter and dimmer effect is zero. Hence, the twinkling effects of the planets are nullified and they do not twinkle.


Question 10: Why does the Sun appear reddish early in the morning?

Answer:

During sunrise, the light rays coming from the Sun have to travel a greater distance in the earth's atmosphere before reaching our eyes. In this journey, the shorter wavelengths of lights are scattered out and only longer wavelengths are able to reach our eyes. Since blue colour has a shorter wavelength and red colour has a longer wavelength, the red colour is able to reach our eyes after the atmospheric scattering of light. Therefore, the Sun appears reddish early in the morning.

Question 11: Why does the sky appear dark instead of blue to an astronaut? 

Answer:

The sky appears dark instead of blue to an astronaut because there is no atmosphere in the outer space that can scatter the sunlight. As the sunlight is not scattered, no scattered light reach the eyes of the astronauts and the sky appears black to them.


Comments